Living Polymerization of Substituted Acetylenes by MoCl₅- and MoOCl₄-based Catalysts

Toshio Masuda,* Toshio Yoshimura, Jun'ichi Fujimori, and Toshinobu Higashimura*

Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan

New catalyst systems composed of $MoCl_5$ (or $MoOCl_4$), Bu^n_4Sn , and ethanol (molar ratio 1:1:0.5) effect living polymerisations of 1-chloro-oct-1-yne and *o*-(trimethylsilyl)phenylethyne, which are the first examples of living polymerisation of acetylenes.

Living polymerisation, *i.e.* polymerisation without termination and chain transfer reactions, provides a useful technique for the preparation of tailor-made polymers such as monodisperse polymers and block copolymers. Whereas living anionic polymerisation has been extensively investigated,¹ only a few living polymerisations initiated by transition metal catalysts have so far been reported.² In these examples monomers such as norbornene, propene, and butadiene have been used. It is known that group 5 and 6 transition metal catalysts (Nb, Ta, Mo, and W) polymerise various substituted acetylenes very effectively.³ Here we report the living polymerisations of two kinds of substituted acetylenes: 1-chloro-oct-1-yne and *o*-(trimethylsilyl)phenylethyne by MoCl₅- and MoOCl₄-based catalysts.

MoCl₅ alone, and as a 1:1 mixture with Buⁿ₄Sn, polymerised 1-chloro-oct-1-yne to give a high molecular weight polymer (\overline{M}_w 1×10⁵---2×10⁶), but the molecular weight distribution (MWD) of the polymer was rather broad ($\overline{M}_w/\overline{M}_n$ ca. 2).⁴ Aiming at the stabilisation of the propagating species, we examined the effects of ethanol on the MoCl₅-Buⁿ₄Sn catalyst in the formation of living polymers.

As seen in Table 1, a three-component catalyst, MoCl5-

Buⁿ₄Sn-EtOH (1:1:0.5) produced poly(1-chloro-oct-1-yne) having a very narrow MWD ($\overline{M}_w/\overline{M}_n$ 1.1—1.2), and the \overline{M}_n of the polymer was found to increase in proportion to monomer conversion. Furthermore, when a new monomer feed was supplied at 100% conversion, the \overline{M}_n increased progressively. All these results suggest that this polymerisation is 'living'. The ratio of polymer chains to Mo catalyst ([P]/[Mo]) was however *ca.* 2%, a relatively small value.

Owing to the importance of the oxo group in active species involved in olefin metathesis,⁵ which is also mediated by metal carbenes,⁶ MoOCl₄ was employed instead of MoCl₅. The polymerisation of 1-chloro-oct-1-yne by MoOCl₄-Buⁿ₄Sn-EtOH (1:1:0.5) proceeded almost instantaneously, and formed a polymer having a similarly narrow MWD (Table 1). When new monomer feeds were provided successively, the M_n of the polymer increased proportionally to the amount of the monomer added. Thus MoOCl₄-Buⁿ₄Sn-EtOH also proves effective in the living polymerisation of 1-chloro-oct-1-yne. In contrast, MoOCl₄ alone, and the MoOCl₄-Buⁿ₄Sn mixture gave polymers with broader MWD's.

The living polymerisation by MoOCl₄-Bun₄Sn-EtOH was also possible using other 1-chloroalk-1-ynes having different

(1100014) bu 4011 (1111013)									
Mo catalyst	Time/ min	Monomer % conversion	$10^{-3} \overline{M}_n{}^{\mathrm{b}}$	MWD°	[P]/[Mo] ^d				
Monomer: CIC=CC ₆ H ₁₃ -n									
MoCls	0.5	28	53	1.11	0.019				
MoCl	1	56	95	1.23	0.021				
MoCl ₅	60	100	160	1.23	0.023				
MoOCl ₄ e	5	100	36	1.17	0.020				

Table 1. Living polymerisation of substituted acetylenes by $MoCl_{5}$ -(MoOCl₄)-Buⁿ₄Sn-EtOH (1:1:0.5).^a

MoCl ₅	60	100	160	1.23	0.023				
MoOČl₄e	5	100	36	1.17	0.020				
MoOCl ₄ e	10	200	50	1.20	0.029				
MoOCl ₄ e	15	300	94	1.14	0.023				
Monomer: HC=CC ₆ H ₄ SiMe ₃ -o									
MoCl ₅	3	32	16	1.15	0.087				
MoCl ₅	6	52	28	1.08	0.081				
MoCl ₅	60	100	43	1.07	0.10				
MoOČl₄	1.5	34	9.5	1.15	0.16				
MoOCl ₄	4	62	21	1.11	0.13				
MoOCl₄	60	100	45	1.11	0.097				

^a Polymerised in toluene at 30 °C; [Mo cat] = 20 mM, $[monomer]_0 = 0.50 \text{ M}$. ^b Determined by g.p.c. ^c MWD = $\overline{M}_w/\overline{M}_n$. ^d Ratio of polymer chain to Mo catalyst. ^c 'Monomer addition' experiments; $[monomer]_0 = [monomer]_{added} = 0.10 \text{ M}$.

alkyl lengths such as 1-chlorohex-1-yne and 1-chlorohexadec-1-yne (\bar{M}_w/\bar{M}_n 1.1—1.2). Hence the preparation of A–B–A and B–A–B type triblock copolymers was attempted with 1-chlorohex-1-yne and 1-chlorohexadec-1-yne. On addition of the second and third feeds of monomers, the \bar{M}_n values increased progressively, while the MWD's remained narrow, strongly suggesting that triblock copolymers had been formed.

Interestingly, the MoCl₅-Bu^{n_4}Sn-EtOH and MoOCl₄-Bu^{n_4}Sn-EtOH catalysts gave a living polymer also from *o*-(trimethylsilyl)phenylethyne, a different type of monomer. Both the narrow MWD's and the progressive increases in \overline{M}_n with monomer conversion that are seen in Table 1 clearly demonstrate the 'living' nature of this polymerisation. The [P]/[Mo] ratios were roughly 10% with this monomer. As in the case of 1-chloro-oct-1-yne, these molybdenum chlorides alone or their mixtures with Bun₄Sn produced high molecular weight poly[o-(trimethylsilyl)phenylethyne] (\overline{M}_w 1×10⁵— 1×10⁶), but the MWD's were not as narrow.

The present polymerisations are the first examples of living polymerisations of acetylenes. It is inferred that ethanol replaces a chlorine ligand of the propagating species (metal carbene) with an ethoxy group and this enhances the stability of the propagating species by lowering its Lewis acidity. A more detailed study on these new living polymerisations is under way.

We thank the Ministry of Education, Science and Culture of Japan for financial support (Grant-in-Aid for Scientific Research on Priority Areas: Macromolecule Complexes: 62612005).

Received, 20th July 1987; Com. 1051

References

- 1 M. Szwarc, Adv. Polym. Sci., 1983, 49, 1.
- L. R. Gilliom and R. H. Grubbs, J. Am. Chem. Soc., 1986, 108, 733; K. C. Wallace and R. R. Schrock, *Macromolecules*, 1987, 20, 448; R. R. Schrock, J. Feldman, L. F. Cannizzo, and R. H. Grubbs, *ibid.*, p. 1169; Y. Doi, S. Suzuki, and K. Soga, *ibid.*, 1986, 19, 2896; P. Hadjiandreou, M. Julemond, and P. Teyssie, *ibid.*, 1984, 17, 2455.
- 3 T. Masuda and T. Higashimura, Adv. Polym. Sci., 1986, 81, 121; Acc. Chem. Res., 1984, 17, 51.
- 4 T. Masuda, T. Yoshimura, K. Tamura, and T. Higashimura, Macromolecules, 1987, 20, 1734; T. Masuda, K. Tamura, and T. Higashimura, J. Chem. Soc., Chem. Commun., 1985, 1615.
- A. K. Rappe and W. A. Goddard, III, J. Am. Chem. Soc., 1982, 104, 448; Nature, 1980, 285, 311; M. T. Mocella, R. Rovner, and E. L. Muetterties, J. Am. Chem. Soc., 1976, 98, 4689.
- 6 K. J. Ivin, 'Olefin Metathesis,' Academic Press, London, 1983; V. Dragutan, A. T. Balaban, and M. Dimonie, 'Olefin Metathesis and Ring-opening Polymerization of Cyclo-olefins,' Wiley, New York, 1986.