Living Polymerization of Substituted Acetylenes by MoCl₅- and MoOCl₄-based **Ca ta I ysts**

Toshio Masuda," Toshio Yoshimura, Jun'ichi Fujimori, and Toshinobu Higashimura"

Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan

New catalyst systems composed of MoCl₅ (or MoOCl₄), Buⁿ₄Sn, and ethanol (molar ratio 1:1:0.5) effect living polymerisations of 1 -chloro-oct-1 -yne and o-(trimethylsilyl)phenylethyne, which are the first examples of living polymerisation of acetylenes.

Living polymerisation, *i.e.* polymerisation without termination and chain transfer reactions, provides a useful technique for the preparation of tailor-made polymers such as monodisperse polymers and block copolymers. Whereas living anionic polymerisation has been extensively investigated,' only a few living polymerisations initiated by transition metal catalysts have so far been reported.² In these examples monomers such as norbornene, propene, and butadiene have been used. It is known that group *5* and 6 transition metal catalysts (Nb, Ta, Mo, and W) polymerise various substituted acetylenes very effectively.3 Here we report the living polymerisations of two kinds of substituted acetylenes: 1-chloro-oct-1-yne and *o-* (trimethylsilyl)phenylethyne by $MoCl₅-$ and $MoOCl₄-based$ catalysts.

MoCl₅ alone, and as a 1:1 mixture with Buⁿ₄Sn, polymerised 1-chloro-oct-1-yne to give a high molecular weight polymer $(\overline{M}_{w} \quad 1 \times 10^{5} - 2 \times 10^{6})$, but the molecular weight distribution (MWD) of the polymer was rather broad $(\bar{M}_{w}/\bar{M}_{n})$ *ca.* 2) .4 Aiming at the stabilisation of the propagating species, we examined the effects of ethanol on the $MoCl₅-Buⁿ₄Sn$ catalyst in the formation of living polymers.

As seen in Table 1, a three-component catalyst, $MoCl₅-$

Bu*,Sn-EtOH (1 : 1 : 0.5) produced poly(1-chloro-oct-1-yne) having a very narrow MWD ($\overline{M}_w/\overline{M}_n$ 1.1--1.2), and the \overline{M}_n of the polymer was found to increase in proportion to monomer conversion. Furthermore, when a_ new monomer feed was supplied at 100% conversion, the \bar{M}_n increased progressively. All these results suggest that this polymerisation is 'living'. The ratio of polymer chains to Mo catalyst ([P]/[Mo]) was however *ca.* 2%, a relatively small value.

Owing to the importance of the **0x0** group in active species involved in olefin metathesis,⁵ which is also mediated by metal carbenes,⁶ MoOCl₄ was employed instead of MoCl₅. The polymerisation of 1-chloro-oct-1-yne by $MoOCl₄-Buⁿ₄Sn-$ EtOH $(1:1:0.5)$ proceeded almost instantaneously, and formed a polymer having a similarly narrow MWD (Table **1>.** When new monomer feeds were provided successively, the M_n of the polymer increased proportionally to the amount of the monomer added. Thus $MoOCl₄-Buⁿ₄Sn-EtOH$ also proves effective in the living polymerisation of 1-chloro-oct-1-yne. In contrast, MoOCl₄ alone, and the MoOCl₄-Buⁿ₄Sn mixture gave polymers with broader MWD's.

The living polymerisation by $MoOCl₄-Buⁿ₄Sn-EtOH was$ also possible using other 1-chloroalk-1-ynes having different

Mo	Time/	Monomer			
catalyst	min	% conversion $10^{-3} \bar{M}_n$ ^b		MWD ^c	$[P]/[Mo]^d$
Monomer: $CIC\equiv CC_6H_{13}$ -n					
MoCl ₅	0.5	28	53	1.11	0.019
MoCl ₅	1	56	95	1.23	0.021
MoCl ₅	60	100	160	1.23	0.023
MoOCl ₄ e	5	100	36	1.17	0.020
MoOCL ^e	10	200	50	1.20	0.029
MoOCl ₄ e	15	300	94	1.14	0.023
Monomer: $HC\equiv CC_6H_4SiMe_3$ -0					
MoCl ₅	3	32	16	1.15	0.087
MoCl ₅	6	52	28	1.08	0.081
MoCl ₅	60	100	43	1.07	0.10
MoOCl ₄	1.5	34	9.5	1.15	0.16
MoOCl ₄	4	62	21	1.11	0.13
MoOCl ₄	60	100	45	1.11	0.097

Table 1. Living polymerisation of substituted acetylenes by MoCl₅-(MoOC14)-Bun4Sn-EtOH (1 : 1 : **0.5).a**

^a Polymerised in toluene at 30 °C; [Mo cat] = 20 mm, [monomer]₀ = 0.50 M , **b** Determined by g.p.c. *c* MWD = $\overline{M}_{\text{w}}/\overline{M}_{\text{n}}$, *d* Ratio of polymer chain to Mo catalyst. *e* 'Monomer addition' experiments; [monomer]₀ $=$ [monomer]_{added} = 0.10 M.

alkyl lengths such as l-chlorohex-l-yne and l-chlorohexadec-1-yne $(\bar{M}_{w}/\bar{M}_{n}$ 1.1-1.2). Hence the preparation of A-B-A and B-A-B type triblock copolymers was attempted with 1-chlorohex-1-yne and 1-chlorohexadec-1-yne. On addition of the second and third feeds of monomers, the M_n values increased progressively, while the MWD's remained narrow, strongly suggesting that triblock copolymers had been formed.

Interestingly, the $MoCl₅-Buⁿ₄Sn-EtOH$ and $MoOCl₄-$ Bun4Sn-EtOH catalysts gave a living polymer also from **o-(trimethylsilyl)phenylethyne,** a different type of monomgr. Both the narrow MWD's and the progressive increases in M_n with monomer conversion that are seen in Table 1 clearly demonstrate the 'living' nature of this polymerisation. The [P]/[Mo] ratios were roughly 10% with this monomer. As in the case of l-chloro-oct-l-yne, these molybdenum chlorides alone or their mixtures with Bun₄Sn produced high molecular weight $poly[*o*- (trimethylsilyl)phenylethyne]$ $(\overline{M}_{w} \quad 1 \times 10^{5}$ - 1×10^6), but the MWD's were not as narrow.

The present polymerisations are the first examples of living polymerisations of acetylenes. It is inferred that ethanol replaces a chlorine ligand of the propagating species (metal carbene) with an ethoxy group and this enhances the stability of the propagating species by lowering its Lewis acidity. A more detailed study on these new living polymerisations is under way.

We thank the Ministry of Education, Science and Culture of Japan for financial support (Grant-in-Aid for Scientific Research on Priority Areas: Macromolecule Complexes: 62612005).

Received, 20th July 1987; Corn. 1051

References

- 1 M. Szwarc, *Adv. Polym. Sci.,* 1983,49, 1.
- 2 L. R. Gilliom and R. H. Grubbs, J. *Am. Chem. SOC.,* 1986, 108, 733; K. C. Wallace and R. R. Schrock, *Macromolecules,* 1987,20, 448; R. R. Schrock, J. Feldman, L. F. Cannizzo, and R. H. Grubbs, *ibid.,* p. 1169; Y. Doi, **S.** Suzuki, and K. Soga, *ibid.,* 1986, 19,2896; P. Hadjiandreou, M. Julemond, and P. Teyssie, *ibid.,* 1984, 17, 2455.
- 3 T. Masuda and T. Higashimura, *Adv. Polym. Sci.,* 1986, 81, 121; *Acc. Chem. Res.,* 1984, 17, 51.
- 4 T. Masuda, T. Yoshimura, **K.** Tamura, and T. Higashimura, *Macromolecules,* 1987, **20,** 1734; T. Masuda, K. Tamura, and T. Higashimura, J. *Chem. SOC., Chem. Commun.,* 1985, 1615.
- *5* A. K. Rappe and W. **A.** Goddard, **111,** *J. Am. Chem. SOC.,* 1982, 104, 448; *Nature,* 1980, *285,* 311; M. T. Mocella, R. Rovner, and E. L. Muetterties, *1. Am. Chem. SOC.,* 1976, **98,** 4689.
- 6 **K.** J. Ivin, 'Olefin Metathesis,' Academic Press, London, 1983; V. Dragutan, **A.** T. Balaban, and M. Dimonie, 'Olefin Metathesis and Ring-opening Polymerization of Cyclo-olefins,' Wiley, New York, 1986.